skip to main content


Search for: All records

Creators/Authors contains: "Swinnich, Edward"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Theβ-Ga2O3nanomembrane (NM)/diamond heterostructure is one of the promising ultra-wide bandgap heterostructures that offers numerous complementary advantages from both materials. In this work, we have investigated the thermal properties of theβ-Ga2O3NM/diamond heterostructure with three different thicknesses ofβ-Ga2O3nanomembranes (NMs), namely 100 nm, 1000 nm, and 4000 nm thickβ-Ga2O3NMs using Raman thermometry. The thermal property—temperature relationships of theseβ-Ga2O3NM/diamond heterostructures, such as thermal conductivity and interfacial thermal boundary conductance were determined under different temperature conditions (from 100 K to 500 K with a 40 K interval). The result provides benchmark knowledge about the thermal conductivity ofβ-Ga2O3NMs over a wide temperature range for the design of novelβ-Ga2O3-based power electronics and optoelectronics.

     
    more » « less
  2. null (Ed.)
    This paper reports the fabrication of β-Ga 2 O 3 nanomembrane (NM) based flexible photodetectors (PDs) and the investigation of their optoelectrical properties under bending conditions. Flexible β-Ga 2 O 3 NM PDs exhibited reliable solar-blind photo-detection under bending conditions. Interestingly, a slight shifting in wavelength of the maximum solar-blind photo-current was observed under the bending condition. To investigate the reason for this peak shifting, the optical properties of β-Ga 2 O 3 NMs under different strain conditions were measured, which revealed changes in the refractive index, extinction coefficient and bandgap of strained β-Ga 2 O 3 NMs due to the presence of nano-sized cracks in the β-Ga 2 O 3 NMs. The results of a multiphysics simulation and a density-functional theory calculation for strained β-Ga 2 O 3 NMs showed that the conduction band minimum and the valence band maximum states were shifted nearly linearly with the applied uniaxial strain, which caused changes in the optical properties of the β-Ga 2 O 3 NM. We also found that nano-gaps in the β-Ga 2 O 3 NM play a crucial role in enhancing the photoresponsivity of the β-Ga 2 O 3 NM PD under bending conditions due to the secondary light absorption caused by reflected light from the nano-gap surfaces. Therefore, this research provides a viable route to realize high-performance flexible photodetectors, which are one of the indispensable components in future flexible sensor systems. 
    more » « less
  3. Abstract

    A free‐standing β‐Ga2O3, also called β‐Ga2O3nanomembrane (NM), is an important next‐generation wide bandgap semiconductor that can be used for myriad high‐performance future flexible electronics. However, details of structure‐property relationships of β‐Ga2O3NM under strain conditions have not yet investigated. In this paper, the electrical properties of β‐Ga2O3NM under different uniaxial strain conditions using various surface analysis methods are systematically investigated and layer‐delamination and fractures are revealed. The electrical characterization shows that the presence of nanometer‐sized gaps between fractured pieces in β‐Ga2O3NM causes a severe property degradation due to higher resistance and uneven charge distribution in β‐Ga2O3NM which is also confirmed by the multiphysics simulation. Interestingly, the degraded performance in β‐Ga2O3NM is substantially recovered by introducing excessive OH‐bonds in fractured β‐Ga2O3NM via the water vapor treatment. The X‐ray photoelectron spectroscopy study reveals that a formation of OH‐bonds by the water vapor treatment chemically connects nano‐gaps. Thus, the treated β‐Ga2O3samples exhibit reliable and stable recovered electrical properties up to ≈90% of their initial values. Therefore, this result offers a viable route for utilizing β‐Ga2O3NMs as a next‐generation material for a myriad of high‐performance flexible electronics and optoelectronic applications.

     
    more » « less
  4. Abstract

    Here, high power flexible Schottky barrier diodes (SBDs) are demonstrated on a plastic substrate using single crystalline β‐Ga2O3nanomembranes (NMs). In order to realize flexible high power β‐Ga2O3SBDs, sub‐micron thick freestanding β‐Ga2O3NMs are created from a bulk β‐Ga2O3substrate and transfer‐printed onto the plastic substrate via a microtransfer printing method. It is revealed that the material property of β‐Ga2O3NMs such as crystal structure, electron affinity, and bandgap remains unchanged compared with its bulk properties. Flexible β‐Ga2O3SBDs exhibit the record high critical breakdown field strength (Ec) of 1.2 MV cm−1in the flat condition and 1.07 MV cm−1ofEcunder the bending condition. Overall, flexible β‐Ga2O3SBDs offer great promise for future flexible energy convergence systems and are expected to provide a much larger and more versatile platform to address a broader range of high‐performance flexible applications.

     
    more » « less